Abstract
BackgroundWearable sensor systems can provide data for at-home gait analyses and input to controllers for rehabilitation devices but they often have reduced estimation accuracy compared to laboratory systems. The goal of this study is to evaluate a portable, low-cost system for measuring ground reaction forces and ankle joint torques in treadmill walking and calf raises.MethodsTo estimate the ground reaction forces and ankle joint torques, we developed a custom instrumented insole and a tissue force sensor. Six healthy subjects completed a collection of movements (calf raises, 1.0 m/s walking, and 1.5 m/s walking) on two separate days. We trained artificial neural networks on the study data and compared the estimates to a multi-camera motion system and an instrumented treadmill. We evaluated the relative strength of each sensor by testing each sensor’s ability to predict the ankle joint torque calculated from a reference inverse kinematics algorithm. We assessed model accuracy through root mean squared error and normalized root mean square error. We hypothesized that the estimation of the models would have normalized root mean square error measures less than 10 %.ResultsFor walking at 1.0 and walking at 1.5 m/s, the single-task, intra-day and multi-task, intra-day predictions had normalized root mean square error less than 10 % for all three force components and both center of pressure components. For the calf raise task, the single-task, intra-day and multi-task, intra-day predictions had normalized root mean square error less than 10 % for only the anterior-posterior center of pressure. The multi-task, intra-day model had similar predictions to the single-task, intra-day model. The normalized root mean square error of predictions from the insole sensor alone were less than 10 % for walking at 1.0 m/s and 1.5 m/s. No sensor was sufficient for the calf raise task. The combination of the insole sensor and the tendon sensor had lower normalized root mean square error than the individual sensors for all three tasks.ConclusionsThe proposed sensor system provided accurate estimates for five of the six components of the ground reaction kinetics during walking at 1.0 and 1.5 m/s and one of the six components during the calf raise task. The normalized root mean square error of the predictions of the ground reaction forces were similar to published studies using commercial devices. The proposed system of low-cost sensors can provide useful estimations of ankle joint torque for both walking and calf raises for future studies in mobile gait analysis.
Highlights
Wearable sensor systems can provide data for at-home gait analyses and input to controllers for rehabilitation devices but they often have reduced estimation accuracy compared to laboratory systems
We evaluated a system consisting of two custom, lowcost sensors: a custom plantar pressure insole and a non-invasive tendon load cell
The normalized root mean square error for the singletask, inter-day group was than the single-task intraday group for all components and tasks (Fig. 4 and Table 2)
Summary
Wearable sensor systems can provide data for at-home gait analyses and input to controllers for rehabilitation devices but they often have reduced estimation accuracy compared to laboratory systems. As one subgroup of mobile health monitoring technologies, can enable more affordable and accessible health care by developing low-cost, unobtrusive measurement devices that can provide real-time feedback to patients and health care providers on the patient’s health in their every day lives [1, 2]. Estimating the ground reaction forces and joint moments of humans in the real world could have substantial clinical impact by providing assessments of pathological gait, fall detection in the elderly, and biofeedback data for home interventions. The aim of this study was to test the ability of multiple sensors to provide low-cost measurements of ground reaction forces and ankle joint moments
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.