Abstract

The rotational oil-spray-cooling method with motor has recently attracted attention because of its compact design and cooling performance. Rotational oil-spray-cooled motors require high computational resources and manufacturing costs; therefore, a precise simulation model is required. In this study, an asymmetric lumped parameter thermal network (LPTN) model of a rotational oil-spray-cooling motor is developed. The heat loss is calculated using correlation equations and electro-magnetic analysis, and the internal temperature distribution of the motor is predicted using conjugate heat transfer and multiphase flow computational fluid dynamics (CFD) analysis. The temperature of the coil inside the motor is measured using experiments. The developed LPTN model determined that the temperature prediction errors of coil parts were 0.15% and 4.42% at the nominal and maximum speeds, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.