Abstract

Due to its excellent capillary characteristics, spiral woven mesh is widely used as the wick structure in ultra-thin flat-plate heat pipes. The performance of these heat pipes surpasses that of conventional ones using sintered powder or multi-layer mesh structures. However, precise quantitative studies on the permeability and capillary pressure characteristics of this unique porous structure are lacking. In this work, we systematically investigated its permeability and capillary pressure, as well as their relationship with the structure. Based on experimental results, we demonstrated that numerical simulation of periodic microelements and subsequent area weighting can accurately predict the permeability of actual structures. Additionally, a parametric study was conducted, yielding a unified empirical relationship between permeability and the structural parameters. In the part of capillary pressure, U-shape tube gravity method was utilized and the relationship between capillary pressure and structure was also disclosed. This study will provide reliable data and theoretical guidance for calculating the capillary limit in heat pipes using spiral woven mesh as the wick.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.