Abstract

The increasing global reliance on pesticides for agricultural pest control has raised significant environmental concerns, particularly due to inadequate monitoring of emerging chemicals in surface waters. This study addresses the potential contamination of aquatic ecosystems by developing and validating a method for detecting trace amounts of four recently registered fungicides: three succinate dehydrogenase inhibitors (fluopyram, penthiopyrad, pydiflumetofen) and fluopicolide, a structurally related fungicide. Employing QuEChERS-based sample extraction combined with ultra-high-performance liquid chromatography (UHPLC-MS-MS), this method achieves detection limits of 0.1 to 0.2 μg/L, with recovery rates between 90% and 110%, and intra-day relative standard deviation values well within the acceptable range of less than 20%. Applied to surface grab water samples from the greater Melbourne area, Australia, the method successfully identified all four fungicides at trace levels, including a notable high concentration of fluopyram (7.3 μg/L) during autumn, with the others intermittently detected at lower concentrations. This study represents the first documented instance of quantifiable detections of these four fungicides in Australian surface water systems. Given their high toxicity to several organisms and the limited global data on these substances, our findings underscore the critical need for continuous monitoring to inform strategies to safeguard aquatic ecosystems from these chemicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.