Abstract

Background: Candida albicans catheter-related infection (CRI) is a great challenge in clinic now, mainly due to the difficulty in eradicating the biofilms. Purpose: In this study, the mechanism of the antibiofilm effect of myricetin (MY) on C. albicans was illustrated. A film forming system (FFS) containing MY and miconazole nitrate (MN) was developed, optimized, and evaluated. The anti-infection effect of MY+MN@FFS against C. albicans CRI was investigated in vivo. Study Design and Methods: To clarify the mechanism of the action of MY, the influence of MY on each key process of the formation of C. albicans biofilms was evaluated. To deliver MY and MN into the skin and form a drug reservoir on the surface of the skin, the FFS was used as a carrier and MY+MN@FFS was developed, optimized, and evaluated. After preliminary confirmation of drug safety, a percutaneously inserted C. albicans CRI mouse model was established to investigate the in vivo anti-infection effect of MY+MN@FFS by fluorescence microscopy and scanning electron microscopy on the outer surface of the catheters, hematoxylin/eosin staining, and periodic acid-Schiff staining of the mice skin tissues. Results: MY was found to inhibit the morphological transition of C. albicans and the secretion of exopolysaccharides, resulting in a reduction in biofilms. MY+MN@FFS exhibited excellent properties and no irritation to mice skin. In an in vivo anti-infection study, MY+MN@FFS exhibited an excellent preventive effect against percutaneously inserted C. albicans CRI. Conclusion: MY+MN@FFS might be a potential approach for effectively preventing percutaneously inserted C. albicans CRI in clinic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call