Abstract

Candidiasis is a common fungal infection caused by Candida species, with Candida albicans being the most prevalent. Resistance to azole drugs, commonly used to treat Candida infections, poses a significant challenge. Transcriptional activator candidate 1 (TAC1) gene has emerged as a key player in regulating drug resistance in C. albicans. This review explores the structure and function of the TAC1 gene and its role in azole resistance. This gene encodes a transcription factor that controls the expression of genes involved in drug resistance, such as efflux pump genes (CDR1, CDR2, and MDR1) and ERG11. Mutations in TAC1 can increase these genes' expression and confer resistance to azoles. Various TAC1 gene mutations, mostly gain-of-function mutations, have been identified, which upregulate CDR1 and CDR2 expression, resulting in azole resistance. Understanding the mechanisms of azole resistance mediated by the TAC1 gene is crucial for the strategies in the effective antifungal development pipeline.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call