Abstract
AbstractThe present study focuses on the use of renewable resource, namely karanja oil for the development of polyurethane foams. The non‐edible oil was chemically modified into the diethanolamide by hydroxylation followed by transamidation. The structure of the diethanolamide was confirmed by proton nuclear magnetic resonance spectroscopy, infrared spectroscopy and gas chromatography–mass spectrometry and used as polyol to prepare water‐blown polyurethane foams. Polyurethane foams were produced with carbon dioxide as the blowing agent generated by the reaction between excess polymeric MDI with water. Foams were prepared by a hand mixing process which involved blending of the diethanolamide with polypropylene glycol, polymeric MDI, water, catalyst and surfactant. The hydroxyamide content, catalyst nature and molecular weight of polypropylene glycol were varied and the effect on the properties was studied. Foam rise time and other physical properties such as density, compression strength and flexural strength were evaluated. Optical microscopy was used to study the morphology to reveal the closed cell nature and other structure–property relationships.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have