Abstract
<abstract><p>Modern engineers face the challenges of complexity, uncertainty and ambiguity as three fundamental aspects of post-industrial technology. Hence, meta-subjective cognitive skills, critical thinking and creativity become no less important than professional knowledge acquired in vocational training. The better conditions for the development of these skills can be found if a contextual approach in teaching/learning is incorporated into the engineering curriculum. The article discusses the strategies for involving students in active learning activities while studying Mechanism and Machine Science (MMS) and developing students' cognitive competencies and metacognitive skills. Following the contextual approach, one can find that the simulation of mechanisms and the use of virtual labs form a powerful methodology to help learners better understand theory concepts. They provide students with a means of deeper numerical analysis and stimulate independent learning activity. Simulation and modeling of MMS products contribute greatly in students' comprehension of kinematics and dynamics of mechanisms. Another milestone of contextual approach is a creative problem-based learning that has been shown to be effective in education. However, creative problem-based learning is not in a focus of MMS courses yet. Brainstorming, TRIZ (theory of inventive problem solving, it sometimes occasionally goes by the English acronym TIPS), Synectics, and other creative problem-solving methods can be adapted for the active MMS learning. The article suggests the adaptation of SCAMPER, a method for solving several problems concerning structural analysis, kinematics, and gear trains.</p></abstract>
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have