Abstract

ABSTRACT The Storm Water Management Model (SWMM) is a hydrological model for simulating and predicting runoff. Although powerful, SWMM can be computationally demanding. Therefore, we develop machine learning (ML) models to approximate the behavior of SWMM and expedite the task of predicting runoff. We perform a case study for the First Creek watershed in Knoxville, Tennessee, USA. We train ML models using rainfall data and subcatchment characteristics and apply feature engineering and clustering to objectively compare the outputs from SWMM and ML models. The results show that random forests can predict runoff volume accurately, with a Mean Absolute Error (MAE) of 0.006 (0.001) 10 6 gallons, where predictions are made almost instantaneously. Hence, our proposed ML-based approach can accurately predict runoff while greatly reducing computational requirements, filling a critical need in the field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.