Abstract
Integrating processes of water and energy interdependence in water systems can improve the understanding of the tradeoffs between water and energy in management and policy. This study presents a development of an integrated water resources management model that includes water-related energy use and GHG emissions. We apply the model to a simplified representation of California's water system. Accounting for water demands from cities, agriculture, environment and the energy sector, and combining a surface water management model with a simple groundwater model, the model optimizes water use across sectors during shortages from an economic perspective, calculating the associated energy use and electricity generation for each water demand. The results of California's water system show that urban end-uses account for most GHG emissions of the entire water cycle, but large water conveyance produces significant peaks over the summer season. Different policy scenarios show the significant tradeoffs between water, energy, and GHG emissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.