Abstract

The pharmaceutical manufacturing sector needs to rapidly evolve to absorb the next wave of disruptive industrial innovations - Industry 4.0. This involves incorporating technologies like artificial intelligence, smart factories and 3D printing to automate, miniaturize and personalize the production processes. The goal of this study is to build a formulation and process design (FPD) framework for a pharmaceutical 3D printing technique called drop-on-demand (DoD) printing. FPD can automate the determination of formulation properties and printing conditions (input conditions) for DoD operation that can guarantee production of drug products with desired functional attributes. This study proposes to build the FPD framework in two parts: the first part involves building a machine learning model to simulate the forward problem - predicting DoD operation based on input conditions and the second part seeks to solve and experimentally validate the inverse problem - predicting input conditions that can yield desired DoD operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.