Abstract
The potential interactions between the diverse pollutants that can be released into the environment and the resulting outcomes are a challenging issue that needs to be further examined. This in vitro study was aimed to assess potential toxic effects caused by combined exposure to tetrabromobisphenol A, a flame retardant widely used and frequently detected in aquatic matrices, and commercially available polystyrene nanoparticles as reference material to evaluate nanoplastics risks. Our results, using freshwater fish cell lines and a set of relevant cytotoxicity endpoints including cell viability, oxidative stress, and DNA damage, provide additional mechanistic insights that could help to fully characterize the toxicity profiles of tetrabromobisphenol A and polystyrene nanoparticles. Furthermore, we describe subtle changes in cell viability as well as the generation of oxidative DNA damage after coexposure to subcytotoxic concentrations of the tested pollutants.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have