Abstract

The dynamics of rhythmic movement has both deterministic and stochastic features. We advocate a recently established analysis method that allows for an unbiased identification of both types of system components. The deterministic components are revealed in terms of drift coefficients and vector fields, while the stochastic components are assessed in terms of diffusion coefficients and ellipse fields. The general principles of the procedure and its application are explained and illustrated using simulated data from known dynamical systems. Subsequently, we exemplify the method's merits in extracting deterministic and stochastic aspects of various instances of rhythmic movement, including tapping, wrist cycling and forearm oscillations. In particular, it is shown how the extracted numerical forms can be analysed to gain insight into the dependence of dynamical properties on experimental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.