Abstract
In this paper we study the small-time local controllability (STLC) property of polynomial control-affine systems whose drift vector field is a 2-homogeneous polynomial vector field and whose control-input vector fields are constant. Such systems arise in the study of controllability of mechanical control systems. Using control variations and rooted trees, we obtain a combinatorial expression for the Taylor series coefficients of a composition of flows of vector fields and use it to derive a high-order sufficient condition for STLC for these systems. The resulting condition is stated in terms of the image of the control-input subspace under the drift vector field and is therefore invariant under (linear) feedback transformations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.