Abstract

The functionality of many polymeric materials depends on their glass transition temperatures (Tg). In computer simulations, Tg is often calculated from the gradual change in macroscopic properties. Precise determination of this change depends on the fitting protocols. We previously proposed a robust data-driven approach to determine Tg from the molecular dynamics simulation data of a coarse-grained semiflexible polymer model. In contrast to the global macroscopic properties, our method relies on high-resolution microscopic details. Here, we demonstrate the generality of our approach by using various dimensionality reduction and clustering methods and apply it to an atomistic model of acrylic polymers. Our study reveals the explicit contribution of the side chain and backbone residues in influencing the determination of the glass transition temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.