Abstract
Abstract Flow-regulated stormwater ponds providing safe outflow discharges prevail as the primary stormwater management tool for stream protections. Detailed pond geometries are essential metrics in pond monitoring technologies, which convert the point-based water level measurements to areal/volumetric ponding water estimations. Unlike labour-intensive surveys (e.g., RTK-GNSS or total stations), UAV-photogrammetry and airborne-LiDAR have been advocated as cost-effective alternatives to acquire high-quality datasets. In this paper, we compare the use of these two approaches for stormwater pond surveys. With reference to RTK-GNSS in-situ observations, we identify their geometric and hydraulic discrepancies based on six stormwater ponds from three aspects: (i) DEMs, (ii) stage-curves and (iii) outflow discharges. Three main findings are outlined: (i) for wet ponds where moisture environments are dominant, UAV-photogrammetry outperforms (infrared) airborne-LiDAR, where airborne-LiDAR yields 0.15–0.54 NSEoutflow, which is unacceptable; (ii) for dry ponds, UAV-photogrammetry obtains 0.88–0.89 NSEoutflow as poor vegetation penetrations; two correction methods (i.e., grass removal and shifted stage-curves) are proposed, indicating good alignment to RTK-GNSS observations and (iii) UAV-photogrammetry delivers <0.1 m resolution in outlining break-line features for stormwater pond structures. With significant economic advantages, the multi-UAV collaborative photogrammetry would address the shortcomings of a single UAV and thus pave the way for large urban catchment/watershed survey applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.