Abstract

Electron density distribution in uniformly doped AlGaAs/GaAs superlattices with respective layer thicknesses 1.5/10 nm and a different number of quantum wells was investigated. Experimental samples containing 3, 5 and 25 periods with the same layer parameters were grown by molecular beam epitaxy. Capacitance-voltage profiling was used to determine the carrier concentration profiles in the structures both numerically and experimentally. During the analysis of experimental capacitance-voltage characteristics it was found that the maximum electron concentration increases with an increase in the number of quantum wells starting from 7,1∙1016 сm–3 for 3 wells up to 9,2∙1016 сm–3 for 25 wells with overall superlattice doping level of 1017 сm–3. In some samples saturation areas are observed on the concentration profiles, that are associated with the region of superlattice. Concentration values, obtained from computer modeling, correspond to the experimental data with an error of less than 10 %. Capacitance-voltage profiling is a suitable technique for determining the carrier concentration profiles in thin barrier superlattices. Despite the fact that the method provides distribution of the “apparent” carrier concentration profile, it can be used to estimate the dopant atoms distribution in the strongly coupled quantum well heterostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.