Abstract
As a consequence of thermal fading of fission tracks in minerals, the fission-track dating method can be used to obtain a sensitive geothermometer for unfolding thermal events in the history of rocks, especially if it is possible to determine the temperature associated with a measured fission-track age, i.e., yielding a temperature age. Based on the concept of a minimum fission-track length (introduced by Märk et al. 1973), we have solved for apatite the differential annealing equation d l/d t = − αt, taking into account the fact that the annealing coefficient depends also on the degree of fission-track reduction. This allows us to calculate an improved age-temperature relationship for apatite, which gives for a measured corrected fission-track age the corresponding temperature, assuming either linear or exponential time-dependence of the temperature. The present results for apatite are compared with previous calculations in apatite and sphene. As expected, a fission-track age of apatite dates a younger (lower temperature) point in the thermal-cooling history than a fission-track age of sphene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.