Abstract
In this paper investigation results of niobium pentoxide thin films deposited by microwave assisted reactive magnetron sputtering process were described. Surface of prepared coatings was examined with the aid of atomic force microscope (AFM) operating in the contact-mode and in ultra high vacuum conditions. The surface of thin films was homogenous, crack free and exhibit low root mean square (RMS) roughness of about 0.34nm. X-ray photoelectron spectroscopy (XPS) studies were performed to determine the chemical states of the niobium at the surface of thin films. Contact angle and surface free energy were additionally investigated to examine the surface properties of the deposited coatings. Optical properties of the Nb2O5 thin films showed, that prepared coatings were well transparent from 350nm to longer wavelength range. Based on transmission and reflection measurements the values of refractive index and extinction coefficient were determined. The antireflective coating based on Nb2O5 thin films for solar cells application was proposed. The hardness and Young's modulus measurements were performed by the nanoindentation technique. These investigations revealed that the hardness of the deposited coatings was ca., 7GPa. Also scratch tests were applied, which have shown that the Nb2O5 thin films were scratch resistant.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have