Abstract
Magnetization dynamics are strongly influenced by damping. An effective damping constant {\alpha}eff is often determined experimentally from the spectral linewidth of the free induction decay of the magnetization after the system is excited to its non-equilibrium state. Such an {\alpha}eff, however, reflects both intrinsic damping as well as inhomogeneous broadening. In this paper we compare measurements of the magnetization dynamics in ultrathin non-epitaxial films having perpendicular magnetic anisotropy using two different techniques, time-resolved magneto optical Kerr effect (TRMOKE) and hybrid optical-electrical ferromagnetic resonance (OFMR). By using an external magnetic field that is applied at very small angles to the film plane in the TRMOKE studies, we develop an explicit closed-form analytical expression for the TRMOKE spectral linewidth and show how this can be used to reliably extract the intrinsic Gilbert damping constant. The damping constant determined in this way is in excellent agreement with that determined from the OFMR method on the same samples. Our studies indicate that the asymptotic high-field approach that is often used in the TRMOKE method to distinguish the intrinsic damping from the effective damping may result in significant error, because such high external magnetic fields are required to make this approach valid that they are out of reach. The error becomes larger the lower is the intrinsic damping constant, and thus may account for the anomalously high damping constants that are often reported in TRMOKE studies. In conventional ferromagnetic resonance (FMR) studies, inhomogeneous contributions can be readily distinguished from intrinsic damping contributions from the magnetic field dependence of the FMR linewidth. Using the analogous approach, we show how reliable values of the intrinsic damping can be extracted from TRMOKE.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have