Abstract

It is challenging to dependably keep the native distribution of arsenic (As) species before sample analysis in the laboratory. The on-site separation method can avoid sample contamination and species change in the process of sample collection and transportation from field to laboratory. In this study, As species distribution and variation of the extracted groundwater was first analyzed by an on-site species separation method in Jianghan Plain, China. Our study illustrated that: 1) high-As groundwater generally existed under mildly reducing conditions (Eh < 200 mV), weak alkaline conditions (pH < 7.2), elevated concentrations of dissolved Fe(II) and S(-II), and high proportions of As (III); 2) As species in the groundwater changed dramatically at room temperature in 36 hours post extraction (HPE). Fe-sulfide and Fe oxides minerals, which adsorbed As (V), were the main reasons influencing the As species concentration; 3) Acidification and strong complexing agents cannot preserve As species effectively. The average proportion of As (III) in the wells, where groundwater samples from the depth of 25 m exceed 10 μg L−1 As, can be reduced by 61% and 63% after HCl and EDTA were added, respectively. Accurate assessment of concentrations and distribution variation of As species in groundwater can guide the removal of As and the safe use of water resources, especially in drought areas relying on drinking well water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.