Abstract

BackgroundA noninvasive technique to monitor thermal lesion formation is necessary to ensure the accuracy and safety of high-intensity focused ultrasound (HIFU) treatment. The purpose of this study is to ultrasonically detect the tissue change due to thermal coagulation in the HIFU treatment enhanced by cavitation microbubbles.MethodsAn ultrasound imaging probe transmitted plane waves at a center frequency of 4.5 MHz. Ultrasonic radio-frequency (RF) echo signals during HIFU exposure at a frequency of 1.2 MHz were acquired. Cross-correlation coefficients were calculated between in-phase and quadrature (IQ) data of two B-mode images with an interval time of 50 and 500 ms for the estimation of the region of cavitation and coagulation, respectively. Pathological examination of the coagulated tissue was also performed to compare with the corresponding ultrasonically detected coagulation region.ResultsThe distribution of minimum hold cross-correlation coefficient between two sets of IQ data with 50-ms intervals was compared with a pulse inversion (PI) image. The regions with low cross-correlation coefficients approximately corresponded to those with high brightness in the PI image. The regions with low cross-correlation coefficients in 500-ms intervals showed a good agreement with those with significant change in histology.ConclusionsThe results show that the regions of coagulation and cavitation could be ultrasonically detected as those with low cross-correlation coefficients between RF frames with certain intervals. This method will contribute to improve the safety and accuracy of the HIFU treatment enhanced by cavitation microbubbles.

Highlights

  • A noninvasive technique to monitor thermal lesion formation is necessary to ensure the accuracy and safety of high-intensity focused ultrasound (HIFU) treatment

  • Magnetic resonance imaging (MRI) and ultrasonic imaging are currently used for monitoring HIFU treatment and its therapeutic effects

  • A hyper-echoic change in a normal B-mode image at the focal point of HIFU has been used for estimating the coagulation area, but the change is faint unless bubbles are generated due to cavitation or boiling [3]

Read more

Summary

Introduction

A noninvasive technique to monitor thermal lesion formation is necessary to ensure the accuracy and safety of high-intensity focused ultrasound (HIFU) treatment. The purpose of this study is to ultrasonically detect the tissue change due to thermal coagulation in the HIFU treatment enhanced by cavitation microbubbles. High-intensity focused ultrasound (HIFU) is a noninvasive technique for thermal ablation of solid tumors and has already been used to treat fibroids and prostatic tumors. A noninvasive technique to monitor thermal lesion formation is necessary to ensure the accuracy and safety of HIFU treatment. A hyper-echoic change in a normal B-mode image at the focal point of HIFU has been used for estimating the coagulation area, but the change is faint unless bubbles are generated due to cavitation or boiling [3].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call