Abstract
BackgroundThis study investigated the dynamic changes of tissue attenuation coefficients before, during, and after high-intensity focused ultrasound (HIFU) treatment at different total acoustic powers (TAP) in ex vivo porcine muscle tissue. It further assessed the reliability of employing changes in tissue attenuation coefficient parameters as potential indicators of tissue thermal damage.MethodsTwo-dimensional pulse-echo radio frequency (RF) data were acquired before, during, and after HIFU exposure to estimate changes in least squares attenuation coefficient slope (Δβ) and attenuation coefficient intercept (Δα0). Using the acquired RF data, Δβ and Δα0 images, along with conventional B-mode ultrasound images, were constructed. The dynamic changes of Δβ and Δα0, averaged in the region of interest, were correlated with B-mode images obtained during the HIFU treatment process.ResultsAt a HIFU exposure duration of 40 s and various HIFU intensities (737–1,068 W/cm2), Δβ and Δα0 increased rapidly to values in the ranges 1.5–2.5 dB/(MHz.cm) and 4–5 dB/cm, respectively. This rapid increase was accompanied with the appearance of bubble clouds in the B-mode images. Bubble activities appeared as strong hyperechoic regions in the B-mode images and caused fluctuations in the estimated Δβ and Δα0 values. After the treatment, Δβ and Δα0 values gradually decreased, accompanied by fade-out of hyperechoic spots in the B-mode images. At 10 min after the treatment, they reached values in ranges 0.75–1 dB/(MHz.cm) and 1–1.5 dB/cm, respectively, and remained stable within those ranges. At a long HIFU exposure duration of around 10 min and low HIFU intensity (117 W/cm2), Δβ and Δα0 gradually increased to values of 2.2 dB/(MHz.cm) and 2.2 dB/cm, respectively. This increase was not accompanied with the appearance of bubble clouds in the B-mode images. After HIFU treatment, Δβ and Δα0 gradually decreased to values of 1.8 dB/(MHz.cm) and 1.5 dB/cm, respectively, and remained stable at those values.ConclusionsΔβ and Δα0 estimations were both potentially reliable indicators of tissue thermal damage. In addition, Δβ and Δα0 images both had significantly higher contrast-to-speckle ratios compared to the conventional B-mode images and outperformed the B-mode images in detecting HIFU thermal lesions at all investigated TAPs and exposure durations.
Highlights
This study investigated the dynamic changes of tissue attenuation coefficients before, during, and after high-intensity focused ultrasound (HIFU) treatment at different total acoustic powers (TAP) in ex vivo porcine muscle tissue
Corresponding to the hyperechoic region that appeared in the B-mode images, Figure 5 revealed a high-intensity region that appeared in the Δβ images at 2.6 s and enlarged and grew in intensity during HIFU treatment
Even after 13 h, the high-intensity region in the Δβ image remained visible. This high-intensity region decreased in size and intensity after 10 min had passed, Figure 9 Lesion growth in ex vivo porcine muscle tissue in conventional B-mode images during slow HIFU
Summary
This study investigated the dynamic changes of tissue attenuation coefficients before, during, and after high-intensity focused ultrasound (HIFU) treatment at different total acoustic powers (TAP) in ex vivo porcine muscle tissue. It further assessed the reliability of employing changes in tissue attenuation coefficient parameters as potential indicators of tissue thermal damage. HIFU has the capability to induce biological effects deep into the body by delivering acoustic energy at a distance from the source, and to generate a millimeter-size focal region [1]. The HIFU beam induces biological effects in the focal region via thermal and mechanical mechanisms. The combination of tight focusing and high intensities generated by the HIFU beam results in the generation of high temperatures (in excess of 60°C in the tissue) at the focal spot, resulting in instantaneous cell death primarily through coagulative necrosis, without heating the surrounding tissues [3,4]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.