Abstract
Polymorphic DNA in complex genomes of agronomic crops can be detected using specific nucleotide and arbitrary primers and the polymerase chain reaction (PCR). Nineteen accessions representing 10 species of the wild perennial soybean were evaluated using 4 sets of specific primers and 3 sets of random amplified polymorphic DNAs (RAPD) primers. The potential of the RAPD assays was further increased by combining two primers in a single PCR. The fragments generated by the two assays discriminated 10 wild species by banding profiles. The size of the amplified DNA fragments ranged from 100 to 2100 base pairs. The resolved PCR products yielded highly characteristic and homogeneous DNA fingerprints. The fingerprints were useful not only for investigating genetic variability but also for further characterizing the wild soybean species by detecting inter- and intra-specific polymorphisms, constructing dendrograms defining the phylogenetic relationships among these species, and identifying molecular markers for the construction of genetic linkage maps. Furthermore, unique markers distinguishing particular species were also identified. Thus, it is expected that PCR will have great relevance for taxonomic studies.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have