Abstract

Despite its relative simplicity, ethylene is an interesting molecule with wide-ranging impact in modern chemistry and biology. Stemming from ethylene's role as a critical plant hormone, there has been significant effort to develop selective and sensitive molecular sensors for ethylene. Late transition metal complexes have played an important role in detection strategies due to ethylene's lack of structural complexity and limited reactivity. Two main approaches to ethylene detection are identified: (1) coordination-based sensors, wherein ethylene binds reversibly to a metal center, and (2) activity-based sensors, wherein ethylene undergoes a reaction at a metal center, resulting in the formation and destruction of covalent bonds. Herein, we describe the advantages and disadvantages of various approaches, and the challenges remaining for sensor development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.