Abstract

In a quest for efficient precursors for the synthesis of boratrane complexes of late transition metals, we have developed a useful synthetic method using [L'M(μ-Cl)Clx ]2 as precursors (L'=η6 -p-cymene, M=Ru, x=1; L'=COD, M=Rh, x=0 and L'=Cp*, M=Ir or Rh, x=1; COD=1,5-cyclooctadiene, Cp*=η5 -C5 Me5 ). For example, treatment of Na[(H3 B)bbza] or Na[(H2 B)mp2 ] (bbza=bis(benzothiazol-2-yl)amine; mp=2-mercaptopyridyl) with [L'M(μ-Cl)Clx ]2 yielded [(η6 -p-cymene)RuBH{(NCSC6 H4 )(NR)}2 ] (2; R=NCSC6 H4 ), [{N(NCSC6 H4 )2 }RhBH{(NCSC6 H4 )(NR)}2 ] (3; R=NCS-C6 H4 ), [(η6 -p-cymene)RuBH(L)2 ] (5; L=C5 H4 NS), and [Cp*MBH(L)2 ] (6 and 7; L=C5 H4 NS, M=Ir or Rh). In order to delineate the significance of the ligands, we studied the reactivity of [(COD)Rh(μ-Cl)]2 with Na[(H3 B)bbza], which led to the formation of the isomeric agostic complexes [(η4 -COD)Rh(μ-H)BHRh(C14 H8 N3 S2 )3 ], 4 a and 4 b, in parallel to the formation of 16-electron square-pyramidal rhodaboratrane complex 3. Compounds 4 a and 4 b show two different geometries, in which the Rh-B bonds are shorter than in the reported Rh agostic complexes. The new compounds have been characterized in solution by various spectroscopic analyses, and their structural arrangements have been unequivocally established by crystallographic analyses. DFT calculations provide useful insights regarding the stability of these metallaboratrane complexes as well as their M→B bonding interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.