Abstract

Demagnetization of the rotor magnets is a significant failure mode that can occur in permanent magnet synchronous machines (PMSMs). Early detection of demagnetization faults can help change system parameters to reduce power output or ensure safety. In this paper, the effects of demagnetization faults were analyzed both in simulation and experiments using the example of drone motors. An approach was investigated to detect even minor demagnetization faults that does not require any additional sensing effort. Machine learning (ML) techniques are used to analyze the phase current data directly received from the inverter to enable anomaly detection. For this purpose, the phase current is transformed by the Fast Fourier Transform (FFT), the spectral data is then reduced in dimensionality, followed by an anomaly detection algorithm using a one-class support vector machine (OC-SVM). To ensure simplified initialization of the ML model without the need for training sets of damaged drives, only data from magnetically undamaged motors was used to train the models for anomaly detection. Different selections of considered harmonics and different metrics were investigated using the experimental data, achieving a precision of up to 99%, a specificity of up to 98%, and an accuracy of up to 90%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.