Abstract

Simple SummaryNon-invasive imaging modalities are commonly used in clinical practice. Recently, the application of machine learning (ML) techniques has provided a new scope for more detailed imaging analysis in esophageal cancer (EC) patients. Our review aims to explore the recent advances and future perspective of the ML technique in the disease management of EC patients. ML-based investigations can be used for diagnosis, treatment response evaluation, prognostication, and investigation of biological heterogeneity. The key results from the literature have demonstrated the potential of ML techniques, such as radiomic techniques and deep learning networks, to improve the decision-making process for EC patients in clinical practice. Recommendations have been made to improve study design and future applicability.Esophageal cancer (EC) is of public health significance as one of the leading causes of cancer death worldwide. Accurate staging, treatment planning and prognostication in EC patients are of vital importance. Recent advances in machine learning (ML) techniques demonstrate their potential to provide novel quantitative imaging markers in medical imaging. Radiomics approaches that could quantify medical images into high-dimensional data have been shown to improve the imaging-based classification system in characterizing the heterogeneity of primary tumors and lymph nodes in EC patients. In this review, we aim to provide a comprehensive summary of the evidence of the most recent developments in ML application in imaging pertinent to EC patient care. According to the published results, ML models evaluating treatment response and lymph node metastasis achieve reliable predictions, ranging from acceptable to outstanding in their validation groups. Patients stratified by ML models in different risk groups have a significant or borderline significant difference in survival outcomes. Prospective large multi-center studies are suggested to improve the generalizability of ML techniques with standardized imaging protocols and harmonization between different centers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.