Abstract

ClSO was produced as an intermediate upon irradiating a flowing mixture of Cl2SO and Ar with a KrF excimer laser at 248 nm. A step-scan Fourier-transform infrared spectrometer coupled with a small multipass absorption cell was employed to detect time-resolved absorption spectrum of ClSO. A transient spectrum in the region 1120-1200 cm(-1), which diminished on prolonged reaction, is assigned to the S-O stretching (nu1) mode of ClSO. A spectrum with a resolution of 0.3 cm(-1) partially reveals rotational structure with the Q-branch at 1162.9 cm(-1). Calculations with density-functional theory (B3LYP/aug-cc-pVTZ) predict the geometry, vibrational, and rotational parameters of ClSO. An IR absorption spectrum of ClSO simulated based on predicted rotational parameters agrees satisfactorily with experimental results. ClSO produced from photolysis of Cl2SO at 248 nm is internally hot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.