Abstract

Samples of rock from the Tomtor Nb - REE (rare-earth elements) deposit (Russia) have been investigated by Raman micro-spectroscopy using visible 532 nm wavelength excitation. Raman spectra of different samples of this rock confirm their composition as calcites and other carbonates such as rhodochrosite, and mixed solid solution phases (Ca, Mn, Fe, Mg, Ba, Sr, REE)(CO3). An association between cyanobacteria and the apatite crystals has been noted Cyanobacteria exhibited Raman modes at 1520–1517 cm−1 located in the double bonds of the central part of the polyene chain of carotenoids. A slight shift of this mode in the apatite-containing samples are dependent upon the compositions of carotenoids, the ratio of the rare earth elements adsorbed by cyanobacteria as well as their interaction with the environment. Laser-induced photoluminescence of REE and Mn+2, obtained as an analytical artifact in the Raman spectra, has been observed in most cases with significant spectral intensity. The luminescence emission of Mn 2+, Sm3+, Eu 3+, Pr3+, Ho3+, Er 3+ in the spectra of the apatite-containing samples obtained with 532 nm excitation can be attributed both to apatite and to other mineral phases with a low concentration which contain these elemental ions. The results obtained in this study allowed us to confirm that the biogenic presence of the cyanobacterial mat had a significant impact on the formation of the unique Nb-REE Tomtor deposit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call