Abstract

Abstract Carbonatite-related rare earth element (REE) deposits, the most significant source of REEs globally, are normally generated in extensional settings, such as intracontinental rifts, mantle plume-related environments, or postcollisional orogens. Syncollisional orogens represent overall compressional regimes, so carbonatites and related REE deposits are rarely identified in such a setting. However, this study reports an anomalous syncollisional carbonatite-related REE deposit, Dong Pao, in the India-Asia collision zone in northwestern Vietnam. The Dong Pao deposit is dated at ca. 52 to 51 Ma through zircon and bastnäsite Th-U-Pb chronometers. The ore-hosting carbonatites were emplaced as stocks with associated syenite. The carbonatite-syenite complex is significantly enriched in light REEs, Ba, and Sr and depleted in high-field strength elements, and has high (87Sr/86Sr)i ratios (>0.707) and low εNd(t) values (–6.5 to –5.6). These geochemical signatures imply that the carbonatite-syenite complex was derived from partial melting of subcontinental lithospheric mantle previously metasomatized and fertilized by REE- and CO2-bearing fluids. Timing of the REE-rich carbonatite-syenite complex indicates that it was related to a far-field stress within the early Eocene main-collision stage at 52 to 51 Ma rather than the late-collision stage at 42 to 35 Ma as previously thought. Collisional tectonism involving block rotation and fault activation are interpreted to have induced disturbance of the lithosphere mantle and created localized, transtensional/extensional environments oblique to the trend of the orogen that facilitated emplacement of the REE-rich carbonatitic magmas. Dong Pao appears to be the first identified, high-tonnage REE deposit that formed in the syncollisional geodynamic setting. Such a finding highlights that tectonic disturbance of an REE-rich lithosphere mantle distal to collision sutures has the potential to generate REE deposits, even during prominent convergence and collision of continents. As such, it defines additional search spaces for exploration of other REE orebodies of this style in complex collisional orogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call