Abstract

Air voids in concrete like honeycombs are one of the major concerns regarding quality assurance for the construction of infrastructure buildings like bridges or tunnels. This paper shows that voids in reinforced concrete walls or slabs can be detected by two standard ground coupled GPR antennas in transmission mode using a two-side zero-offset profiling configuration like in borehole radar applications. For the detection of voids only the amplitudes of the direct wave in transmission mode are evaluated. Even when the depth of the void can not be detected in this configuration, the major advantage of the zero-offset profiling in transmission mode is a lower interference with the surrounding reinforcement compared to a regular one-side reflection profiling. The capability of the two-side zero-offset profiling is demonstrated on a test specimen with a set of polystyrene balls of two different sizes representing voids like honeycombs in concrete. GPR measurements are realized by an automated scanning system in order to allow for a synchronous movement of the antennas. In transmission mode voids can be detected at greater depths compared to reflection mode, since the travel path of the direct wave is half as long. Another characteristic of the transmission mode is that the direct wave through the air voids is faster and arrives earlier than the direct wave in the surrounding concrete. Hence it can be separated from the strong reflection of the reinforcement. Finally the measurements in transmission mode are less sensitive to the antenna frequency and polarization than in reflection mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.