Abstract

The size distribution of air voids in concrete has significant impacts on freeze-thaw damage. This study presented a non-destructive ultrasonic scattering technique to determine the air void size distribution in hardened concrete samples. The ultrasonic scattering theory was applied to calculate the theoretical attenuation of concrete by including the effects of the viscoelastic matrix and different sizes of air voids and aggregates. The air void size distribution was determined by using an inverse analysis to minimize the difference between theoretical and experimental attenuation of concrete. The logarithm normal distribution for large-size air voids and normal distribution for small-size air voids were selected to better represent the air void size distribution in concrete. Both the large-size range and small-size air void distributions were obtained with ultrasonic scattering techniques for hardened concrete specimens. These results were favorably compared with the petrography-based ASTM C 457 method. The comparisons indicated that the developed ultrasonic scattering technique can measure the size distribution of air voids in concrete for the evaluation of freeze-thaw durability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.