Abstract

The use of a high-electron mobility semiconductor nanowire as transistor channel has recently allowed the extension of the spectral coverage of THz field-effect transistor detectors up to 1.5 THz. In this report, we demonstrate efficient operation of a field-effect transistor detector based on a semiconductor nanowire at a much higher frequency, 2.8 THz, with a responsivity ≈5 V/W in a bandwidth ≈100 kHz, thus proving the full potential of such approach for the detection of THz quantum cascade lasers. Finally, such a THz sensing system is exploited to perform raster scan transmission imaging, with high spatial resolution, signal-to-noise ratio, and acquisition rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call