Abstract
We present general symmetry considerations on how a time-reversal breaking state may be detected by angle-resolved photoemission using circularly polarized photons as has been proposed earlier. Results of recent experiments utilizing the proposal in underdoped cuprates are analyzed and found to be consistent in their symmetry and magnitude with a theory of the copper oxides. These experiments if correct, together with evidence of a quantum critical point and marginal Fermi-liquid properties near optimum doping, suggest that the essentials of a valid microscopic theory of the phenomena in the cuprates may have been found.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have