Abstract

This paper studies a semiconductor wireless sensor system, which is composed of a semiconductor wireless sensor sampling circuit, gas‐sensitive signal alarm and wireless transmitting circuit, and wireless radio frequency signal receiving circuit. The system is suitable for wireless monitoring of hydrogen fluoride gas in chemical plants. The hydrogen fluoride gas sensor is designed, integrated, and classified according to the polarity and size of the sensor output signal. The signal processing circuit of the sensor output signal is made with an integrated design. This paper developed a simulation experimental system for the wireless monitoring network characteristics of toxic hydrogen fluoride gas and completed the monitoring system’s sensor characteristic calibration and accuracy comparison simulation experiment, the communication distance test experiment of the communication system, and the research experiment on the influence of environmental humidity on the sensor characteristics of the monitoring system. In terms of software, the workflow of network nodes has been optimized. Since the structure of the wireless sensor network is not exactly the same in different application fields, the toxic gas monitoring system based on wireless sensor networks must focus on extending the network’s life cycle. Without affecting the normal operation of the system, distributed compressed sensing can greatly extend the service life of the system. Therefore, this subject combines the compressed sensing technology developed in recent years with the air monitoring system for the processing of transmission data, in order to achieve the purpose of further reducing the energy consumption of the system. The simulation experiment demonstrated that the lmF neural network combined with gas sensor array technology can realize qualitative identification, quantitative analysis of single gas, and quantitative analysis of mixed combustible gas. The research work in this area also provides a new way to further combine the miniature hydrogen fluoride gas sensor unit with sensor technology, integrate the hydrogen fluoride gas sensor unit and the electronic tag, and expand the wireless application of the gas sensor.

Highlights

  • Toxic chemical leaks caused by chemical plant explosion accidents, forest fires, etc. could result in severe damage to human beings and be disastrous for the environment

  • The increasing attention to hydrogen fluoride leak requires the expansion of the scope of the monitoring environment. It is difficult for a single monitoring point to cover these monitoring environments and monitor the measured environment in real time, so a preliminary environmental monitoring network has emerged [4]

  • For the monitoring of hydrogen fluoride gas in a large environment, monitoring points must be arranged at different locations to form a monitoring network

Read more

Summary

Introduction

Toxic chemical leaks caused by chemical plant explosion accidents, forest fires, etc. could result in severe damage to human beings and be disastrous for the environment. For the monitoring environment where a large number of monitoring points need to be arranged, the wire transmission data layout is very troublesome and costly [12] In response to this reality, based on the technology of sensors, wireless communication and wireless sensor networks, and other system-related technologies, this article has carried out a more detailed study on the toxic gas monitoring system and proposed a set of toxic gas monitoring systems based on the wireless sensor network. We integrate the design of wireless communication nodes and hydrogen fluoride gas sensors to realize wireless node communication for sensor data transmission and control command transmission and establish a central computer control platform to realize the selection of monitoring points and sensors and the automatic processing of measurement signals. The gas sensor sampling circuit is integrated with various wireless sensor systems such as electronic tags

Related Works
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.