Abstract

Abstract This chapter highlights quantitative methods designed to identify and rank exotic species with potential risk to cause economic and/or environmental harm if they establish in a new area. Until now, pest risk assessments have tended to be qualitative and reactive instead of quantitative and proactive. Here, a computational-intelligence technique called a self-organizing map (SOM) is described that can be used to analyse regional profiles or assemblages of pest species to determine their potential for establishment in new regions. In addition to the SOM, two other useful clustering or classification algorithms, k-means and hierarchical analysis, are also demonstrated to provide a quantitative framework to the risk assessment process. The examples described for each method illustrate how a pest risk analyst can identify, from a large list of potential hazards, which species present the most risk to target areas. Furthermore, examples are given of how such analyses may indicate donor and recipient regions for pest invasion and can highlight previously unknown or ignored threats for further investigation. Finally, cautions are provided and limitations of SOMs and other clustering methods applied to the area of pest risk assessment are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.