Abstract

In classical extreme value theory probabilities of extreme events are estimated assuming all the components of a random vector to be in a domain of attraction of an extreme value distribution. In contrast, the conditional extreme value model assumes a domain of attraction condition on a sub-collection of the components of a multivariate random vector. This model has been studied in Heffernan and Tawn (JRSS B 66(3):497–546, 2004), Heffernan and Resnick (Ann Appl Probab 17(2):537–571, 2007), and Das and Resnick (2009). In this paper we propose three statistics which act as tools to detect this model in a bivariate set-up. In addition, the proposed statistics also help to distinguish between two forms of the limit measure that is obtained in the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.