Abstract

Helium ionization plays an important role in the energy balance of the upper chromosphere and transition region. Helium spectral lines are also often used as diagnostics of these regions. We carry out 1D radiation-hydrodynamics simulations of the solar atmosphere and find that the helium ionization is mostly set by photoionization and direct collisional ionization, counteracted by radiative recombination cascades. By introducing an additional recombination rate mimicking the recombination cascades, we construct a simplified 3 level helium model atom consisting of only the ground states. This model atom is suitable for modeling non-equilibrium helium ionization in 3D numerical models. We perform a brief investigation of the formation of the He I 10830 and He II 304 spectral lines. Both lines show non-equilibrium features that are not recovered with statistical equilibrium models, and caution should therefore be exercised when such models are used as a basis in the interpretation of observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.