Abstract

Recently, analysis of solar spectra obtained with the EUV Imaging Spectrograph (EIS) onboard the Hinode satellite has revealed the ubiquitous presence of asymmetries in transition region (TR) and coronal spectral line profiles. These asymmetries have been observed especially at the footpoints of coronal loops and have been associated with strong upflows that may play a significant role in providing the corona with hot plasma. Here, we perform a detailed study of the various processes that can lead to spectral line asymmetries, using both simple forward models and state-of-the-art three-dimensional radiative MHD simulations of the solar atmosphere using the Bifrost code. We describe a novel technique to determine the presence and properties of faint secondary components in the wings of spectral line profiles. This method is based on least-squares fitting of observed so-called R(ed)B(lue) asymmetry profiles with pre-calculated RB asymmetry profiles for a wide variety of secondary component properties. We illustrate how this method could be used to perform reliable double Gaussian fits that are not over- or under-constrained. We also find that spectral line asymmetries appear in TR and coronal lines that are synthesized from our three-dimensional MHD simulations. Our models show that the spectral asymmetries are a sensitive measure of the velocity gradient with height in the TR of coronal loops. The modeled TR shows a large gradient of velocity that increases with height: this occurs as a consequence of ubiquitous, episodic heating at low heights in the model atmosphere. We show that the contribution function of spectral lines as a function of temperature is critical for sensitivity to velocity gradients and thus line asymmetries: lines that are formed over a temperature range that includes most of the TR are the most sensitive. As a result, lines from lithium-like ions (e.g., O VI) are found to be the most sensitive to line asymmetries. We compare the simulated line profiles directly with line profiles observed in the quiet Sun with SOHO/SUMER and Hinode/EIS and find that the shape of the profiles is very similar. In addition, the simulated profiles with the strongest blueward asymmetry occur in footpoint regions of coronal loops, which is similar to what we observe with SUMER and EIS. There is however a significant discrepancy between the simulations and observations: the simulated RB asymmetries are an order of magnitude smaller than the observations. We discuss the possible reasons for this discrepancy. In summary, our analysis shows that observations of spectral line asymmetries can provide a powerful new diagnostic to help constrain coronal heating models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.