Abstract

The temperature-dependent desorption behavior of selenium and tellurium is investigated using a heated quartz crystal microbalance. Prior to heating the quartz crystal microbalance, selenium and tellurium films with varying thickness were deposited using thermal effusion cells in a molecular beam epitaxy system for subsequent determination of temperature-dependent mass loss of the deposited films. The desorption rate for tellurium was found to exhibit one sharp peak around 190 °C, indicating the loss of the entire film irrespective of film thickness within a temperature window of 20 °C, which was completely evaporated at 200 °C. Similar experiments for selenium revealed that the thermal desorption took place via a two-stage process with a smaller portion of the material desorbing within an even narrower temperature window of 5 °C at a much lower peak temperature of 65 °C, while most selenium desorbed within a temperature range of 10 °C around 90 °C. This two-stage behavior indicated the presence of at least two chemically distinct selenium species or binding states. The direct and quantitative determination of the chalcogen desorption process provides important insights into the kinetics of chalcogenide-based film growth and is in addition of applied benefit to the research community in the area of Se/Te capping and decapping of air sensitive materials as it provides temperature ranges and rates at which full desorption is achieved. Our work furthermore points toward the need for a more detailed understanding of the chemical composition state of atomic and molecular beams supplied from thermal evaporation sources during growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.