Abstract

We investigate the effect of temperature on the single-photon properties of four germanium/silicon (Ge/Si) single-photon avalanche photodiodes (SPADs), which are fabricated by Ge-on-Si direct epitaxial growth, Ge-on-Si two-step epitaxial growth, Ge/Si direct wafer bonding, and Si/Si hydrophobic bonding, respectively. It is found that the wafer-bonded Ge/Si SPAD exhibits extremely low dark current and dark count rate (DCR) compared with the epitaxial ones at 250 and 300K. This implies that the wafer-bonding technique is a possible candidate for the fabrication of Ge/Si SPAD, which can be operated at near room temperature. Additionally, due to the low DCR and high operation temperature, the wafer-bonded Ge/Si SPAD shows extremely high pulse repetition rate (∼28 MHz in theory for DCR=108 Hz). That is, the wafer-bonded Ge/Si SPAD can be used in a high-speed field. Finally, the effect of voltage pulse width, number of photons per pulse, and hold-off time on the performance of the wafer-bonded Ge/Si SPAD at different temperatures is also clarified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.