Abstract

This paper starts from the leakage currents through the gates of the last MOSFET generations and propose a related structure, which can be inherently included as parasitic device in any future MOSFET sub-22nm or can be deliberated fabricated to induce its own behavior. This structure is abbreviated in this paper by p-NOI (planar-Nothing On Insulator) and it can be simply produced by the planar Si-technology. Its concept is derived from the NOI (Nothing On Insulator) concept, but replaces the vacuum with oxide. The conduction mechanism is based on a thin oxide tunneling, under the Fowler-Nordheim's law. The current flow occurs from a source to a lateral drain, without an inversion channel and without a lateral pn junction, as in the MOSFET case. A similar investigated device by other authors is a fabricated MIM (Metal-Insulator-Metal) structure, which is compared with the actual p-NOI simulation. Finally, a dual gate p-NOI device is investigated. The depletion-accumulation transition is captured by the static I-V static characteristics. Using two steps of oxide, of 2nm and 10nm, a second planar-NOI structure with three terminals was studied. The (G) terminal is associated to a Gate and the (S) terminal is associated to a Source of a Field Effect Transistor. Some particular applications as diode or transistor are emphasized versus the gate biasing regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call