Abstract

AbstractThis paper proposes an intelligent battery charging scheme for hybrid electric vehicles (HEVs) with a fuel cell as the primary energy source and solar photovoltaic (PV) and battery as the auxiliary energy sources. While dealing with the PV, a minimized oscillation‐based improved perturb and observe (I‐P&O) maximum power point (MPP) tracking (MPPT) scheme is designed to mitigate the impact of oscillations around MPP and loss of tracking direction. The DC–DC boost and DC–DC buck power converters are connected in a cascade manner to harvest optimal power from PV and as a charging circuit for HEV, respectively. An intelligent fuzzy logic‐based proportional integral derivative (PID) (F‐PID) controller is employed for the buck converter to get the constant voltage and constant current for the effective charging of the battery. The two primary objectives of this work are (1) maximum utilization of the designed PV array via the I‐P&O MPPT scheme to enhance the system efficacy, reduce system cost, and reduce complexity. (2) To obtain minimum battery losses and an enhanced life cycle of HEV. The proposed MPPT scheme provides a maximum 99.80% tracking efficiency of the considered PV array at an insolation level of 1000 W/m2. Moreover, almost nominal voltage and current ripples have appeared in HEV's proposed intelligent battery charging circuit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call