Abstract

The purpose of this paper is to enhance the performance and tracking efficiency of solar photovoltaic systems. This aim can be achieved by operating the photovoltaic array at its optimum power and reducing the output ripple problem of DC-DC converters that affect and stress sensible electronic loads. In view of that, an advanced maximum power point (MPP) tracking (MPPT) scheme, which can guarantee zero oscillation tracking of the accessible MPP and less ripple magnitude on the output side of the DC-DC boost converter, is used. Various simulations are carried out under three conditions of solar irradiance variation, namely, standard test conditions (STC), rapid, and Sin scenarios, using the MATLAB/Simulink® environment, to assess and benchmark the robustness of the tracking of the new MPPT scheme over the celebrated Increment of Conductance (INC) MPPT scheme. Based on the simulation results, the proposed scheme can significantly improve tracking accuracy and reduce the magnitude of ripples on both sides of the boost converter compared to the INC scheme. Certainly, the proposed scheme can provide a shorter time response (0.011 seconds) to locate and track the expected MPP, which is 2.55 times less than that of the INC scheme; a zero power magnitude oscillation instead of 15.9 watts of the INC scheme; and six-time minimization of the magnitude of output voltage ripples compared to the INC scheme. Furthermore, the suggested MPPT scheme has the better tracking efficiency in all scenarios; 99.86%, 99.60%, and 99.62% in the STC, rapid, and Sin scenarios, respectively, with an average value of 99.69% compared to the INC MPPT scheme, which has 94.23%, 95.28%, and 97.87% in the STC, rapid, and Sin scenarios, respectively, with a moderate average tracking efficiency of 95.79%. Finally, the accuracy and tracking performance of the proposed MPPT scheme are verified by real-time examination using the RT-LAB simulator. According to the results obtained, the proposed scheme provides the highest tracking efficiency of 99.80% and 97.77% under the STC and sudden insolation change scenarios, respectively, compared to the INC scheme, which shows, respectively, 97.8% and 96.5% under both scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.