Abstract

Abstract The continuous contact-based skating technique utilizes the sideway movement of the two skates while changing the orientation of the two skates simultaneously. The skates remain in contact with the surface. A mathematical model mimicking a continuous skating technique is developed to analyze the kinematic behavior of the platform. Kinematic and dynamic equations of motion are derived for the nonholonomic constraints. Heuristic-based motion primitives are defined to steer the robotic platform. For the lateral movement of the platform, a creeping-based motion primitive is proposed. A prototype of the robotic platform is developed with three actuated degrees-of-freedom—orientation of two skates and distance between them. A multibody model of the platform is also developed in matlab. Analytical expressions are verified using simulation and experiments. The robotic platform follows the desired motion profiles. The motion profiles include straight-line motion, motion in a circular curve, and lateral creep-like motion of the platform. However, the initial deviation has been observed in both the simulations and experiments due to the slipping of the roller skate at the contact point with the surface. The platform can be effectively used in a structured environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call