Abstract

In this work, the design, analysis, and characterization of a parallel robotic motion generation platform with 6-degrees of freedom (DoF) for magnetic resonance imaging (MRI) applications are presented. The motivation for the development of this robot is the need for a robotic platform able to produce accurate 6-DoF motion inside the MRI bore to serve as the ground truth for motion modeling; other applications include manipulation of interventional tools such as biopsy and ablation needles and ultrasound probes for therapy and neuromodulation under MRI guidance. The robot is comprised of six pneumatic cylinder actuators controlled via a robust sliding mode controller. Tracking experiments of the pneumatic actuator indicates that the system is able to achieve an average error of 0.69 ± 0.14 mm and 0.67 ± 0.40 mm for step signal tracking and sinusoidal signal tracking, respectively. To demonstrate the feasibility and potential of using the proposed robot for minimally invasive procedures, a phantom experiment was performed in the benchtop environment, which showed a mean positional error of 1.20 ± 0.43 mm and a mean orientational error of 1.09 ± 0.57°, respectively. Experiments conducted in a 3T whole body human MRI scanner indicate that the robot is MRI compatible and capable of achieving positional error of 1.68 ± 0.31 mm and orientational error of 1.51 ± 0.32° inside the scanner, respectively. This study demonstrates the potential of this device to enable accurate 6-DoF motions in the MRI environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call