Abstract

A compact robotic platform is designed for simultaneous multichannel motion control for light delivery and dosimetry during interstitial photodynamic therapy (PDT). Movements of light sources and isotropic detectors are controlled by individual motors along different catheters for interstitial PDT. The robotic multichannel platform adds feedback control of positioning for up to 16 channels compared to the existing dual-motor system, which did not have positioning encoders. A 16-channel servo motion controller and micro DC motors, each with high resolution optical encoder, are adopted to control the motions of up to 16 channels independently. Each channel has a resolution of 0.1mm and a speed of 5cm/s. The robotic platform can perform light delivery and dosimetry independently, allowing arbitrary positioning of light sources and detectors in each catheter. Up to 16 compact translational channels can be combined according to different operational scheme with real-time optimal motion planning. The characteristic of high speed and coordinating motion will make it possible to use short linear sources (e.g., 1- cm) to deliver uniform PDT treatment to a bulk tumor within reasonable time by source stepping optimization of multiple sources simultaneously. Advanced robotic control algorithm handles the various unexpected circumstance in clinical procedure, e.g., positiontorque/current control will be applied to prevent excessive force in the case of resistance in the fiber or motorized mechanism. The robotic platform is fully compatible with operation room (OR) environment and improves the light delivery and dosimetry in PDT. It can be adopted for diffusing optical tomography (DOT), spectroscopic DOT and fluorescent spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call