Abstract

This article presents a hexagonal circularly polarized microstrip antenna (HCPMA) array design using paralleled dynamic minimum lower confidence bound. The HCPMA array is fed by a hybrid feeding network composed with “H” type apertures coupling network and 45° slots which are loaded on the hexagonal patch. It is designed to be compatible with ISM band which achieves a 2.56 GHz impedance bandwidth (S11<–10 dB) and a 0.6 GHz Axial ratio (AR) bandwidth (AR < 3 dB). Given the heavy computational burden and limited computation resources of the electromagnetic analysis, the improved algorithm using MLCB in conjunction with paralleled finite element model and Kriging metamodel achieves two times speed enhancement for the antenna optimization than the traditional MLCB optimization. The multi-objective optimization is introduced to solve the polarization, impedance, and radiation pattern of the HCPMA element and array. The antenna optimization results show that the proposed strategy can not only obtain an optimal solution, but also significantly improve the calculating efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call