Abstract

A 4×4 Isotropic Homogeneous Metasurface (IHM) backed, rectangular slotted dual-layered triband microstrip patch antenna (MPA) is proposed in this article. A detailed mathematical way to analyze the tensor surface impedance matrix (TSIM) of the proposed 4×4 IHM and slotted patch is demonstrated. The proposed IHM-backed MPA has a triband even-mode resonance at fr0=2.45 GHz, 2fr0=5.4 GHz, and 4fr0=7.7 GHz. A better and more accurate estimation of bio-superstrate loading effect for triband resonance is employed using the human skin (εr=52.79, σs=1.39) and blood (εr=52.8, σs=1.23) layer on the top of dual-layered metasurface-backed slotted MPA. TSIM characterization is observed for both blood- and skin layer-loaded dual-layered metasurface-backed slotted MPA. Chicken breast (εr=55.2, σs=1.49, and tanδ=0.325) with blood (εr=58.2, σs=2.59, and tanδ=0.364) is loaded onto fabricated dual-layered structure to verify numerically modeled estimation. A closed form triband, even-order resonance mode (i.e., fr0, 2fr0, and 4fr0) estimation based on dielectric superstrate thickness (Hs) is numerically established using MATLAB solver. Complete measurement setup with simulated vs. measured results is compared in this article.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.